方向3:锂电池电极材料

锂离子电池目前已广泛应用于人们的生产生活中,并促使手机、笔记本电脑、数码相机等技术得到高速发展。此外,随着电动汽车行业的迅猛发展,锂离子电池在动力储能电源方面的应用占比也逐年增加。锂离子电池主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,锂离子在两个电极之间往返嵌入和脱嵌:充电时,锂离子从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。锂离子电极材料应满足以下三个条件:一是充放电过程中,材料与电解质有较好的电化学相容性,且在全充电状态下保持电化学稳定性;二是具有较好的电极过程动力学性能;三是具有锂离子嵌入脱出的完全可逆性能。我们主要针对锂离子电池电极材料(富锂锰、无钴高镍、生物炭等)进行研究,并与广东工业大学和四川朗晟新能源科技有限公司进行合作研究。

锂离子电池的工作原理示意图

代表性成果:

[1] Jinchao Li, Weifeng Deng, Hao Li, Liang Chen*, Yaping Zhang*, Jing Li, Yingze Song, Hao Duan. Biomass-derived N-P double-doped porous carbon spheres and their lithium storage mechanism, International Journal of Hydrogen Energy (2024) 56: 828-836.

[2] Hao Li, Huan Luo, Jinhan Teng, Shengxu Yuan, Jinchao Li*, Yaping Zhang*, Hao Duan, Jing Li. Lotus root-derived porous carbon as an anode material for lithium-ion batteries, Chemistry Select (2022) 33: e202202413.

[3] Huan Luo, Hao Li, Shengxu Yuan, Jinchao Li*, Yaping Zhang*, Hao Duan, Jing Li. Enhanced electrochemical performance of Li-rich manganese layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 by surface modification with Al2O3-ZrO2 for lithium-ion battery, Journal of Materials Science: Materials in Electronics (2022) 33: 20518-20531.

[4] Yajun Yang, Shuxing Wu*, Yaping Zhang, Canbin Liu, Xiujuan Wei, Dong Luo, Zhan Lin*. Towards efficient binders for silicon based lithium-ion battery anodes, Chemical Engineering Journal (2021) 406: 126807.

[5] Zeheng Li, Yaping Zhang*, Tiefeng Liu, Xuehui Gao, Siyuan Li, Min Ling*, Chengdu Liang, Junchao Zheng*, Zhan Lin*. Silicon anode with high initial coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries, Advanced Energy Materials (2020) 10: 1903110.

[6] Qingqing Ren, Yaping Zhang, Chang Liu, Yi Han, Zhenbo Wang*, Zhan Lin*. Hollow-sphere iron oxides exhibiting enhanced cycling performance as lithium-ion battery anodes, Chemical Communications (2019) 55: 11638-11641.

资助项目:

射洪市经济技术开发区管委会项目(No. 21zh0226)

0.095187s